«

赋能人工智能变革商业制药模式

qimuai 发布于 阅读:2 一手编译


赋能人工智能变革商业制药模式

内容来源:https://www.technologyreview.com/2025/10/13/1124829/transforming-commercial-pharma-with-agentic-ai/

内容总结:

全球制药行业正面临多重挑战:原材料成本上涨与供应链压力持续挤压利润,美国等国家推行药品控费政策加剧行业竞争。与此同时,未来六年专利到期潮或将导致约3000亿美元销售额面临流失风险,而新药上市成本正以每年8%的速度攀升,单款药物研发投入在2022年已达40亿美元。

市场端正经历深刻变革。患者与医疗机构对个性化医疗需求激增,精准药物与靶向治疗虽具疗效优势,但其复杂工艺导致成本高企,限制了市场规模。在营销层面,药企与医疗专业人士的触达率从2022年的60%骤降至2024年的45%,个性化互动与实时沟通成为破局关键。然而海量营销内容所需的医学、法律及合规审查,正导致商机流失。

在此背景下,智能体人工智能被寄予厚望。该技术有望在销售、合规等领域赋能从业人员,通过优化工作流程提升整体效能,为制药行业转型提供新动能。

(本文为MIT Technology Review定制内容,由专业团队完成创作,人工智能工具仅辅助经过严格人工审核的次要生产环节。)

中文翻译:

本文为赞助内容
智能体AI如何重塑商业制药格局
从销售到合规,AI智能体有望增强员工能力、优化工作流程并提升生产效率。
本文与Globant联合呈现
近年来在全球经济动荡的大背景下,制药行业正经历着自身变革风暴。原材料成本上涨与供应链中断持续挤压利润空间,同时制药企业还面临控制药价的巨大压力——包括来自美国等国家的政策要求。与此同时,专利到期潮将在2030年前造成约3000亿美元的潜在销售额损失。随着企业失去所研发药物的专营权,竞争者将带着低成本仿制药和生物类似药涌入市场,导致品牌药销售额急剧下滑——这就是所谓的"专利悬崖"。与此同时,新药上市成本持续攀升,麦肯锡估计单药上市成本正以每年8%的速度增长,2022年已达40亿美元。

医疗机构的行为规范和期望值也在演变。患者和医疗服务提供者追求更个性化的服务,推动了对精准药物和靶向治疗的需求增长。虽然这些疗法对患者疗效显著,但其复杂的配制和生产工艺导致成本高昂,目标客户群体也相对有限。

个性化需求同样延伸至营销领域。制药企业日益需要争夺医疗专业人士的注意力,数据显示生物制药企业在2024年能接触到的医疗专业人士比例已从2022年的60%降至45%。在竞争日益激烈的市场中,个性化服务、实时沟通渠道与精准内容成为建立信任、触达目标医生的有效方式。但面对需要经过医学、法律和监管审查的内容量激增,企业难以跟上节奏,可能导致错失市场机遇。

本文由《麻省理工科技评论》定制内容团队Insights创作,未经过编辑部采编。内容由人类作者、编辑、分析师和插画师完成研究、设计与撰写,可能涉及的AI工具仅限用于通过严格人工审核的辅助生产流程。

深度聚焦
人工智能
与AI聊天机器人建立情感依赖竟如此简单
我们正日益与聊天机器人形成情感纽带。这对部分人群尚属安全,但对其他人则存在风险。

谷歌首次披露单次AI查询能耗数据
这是头部AI企业迄今最透明的能耗评估,为研究人员提供了期待已久的内幕视角。

心理治疗师暗中使用ChatGPT引发客户焦虑
部分治疗师在诊疗过程中使用AI,此举正在危及客户的信任与隐私。

为何AI重大突破应归功于鸽子
这种鸟类从未因智慧获得认可,但推动全球最先进AI系统发展的强化学习技术,其思维模式更接近鸽子而非人类。

保持联系
订阅《麻省理工科技评论》
获取最新动态
发现特别优惠、热门资讯、近期活动及更多内容。

英文来源:

Sponsored
Transforming commercial pharma with agentic AI
From sales to compliance, AI agents promise to augment workforce capabilities, streamline workflows, and enhance productivity.
In association withGlobant
Amid the turbulence of the wider global economy in recent years, the pharmaceuticals industry is weathering its own storms. The rising cost of raw materials and supply chain disruptions are squeezing margins as pharma companies face intense pressure—including from countries like the US—to control drug costs. At the same time, a wave of expiring patents threatens around $300 billion in potential lost sales by 2030. As companies lose the exclusive right to sell the drugs they have developed, competitors can enter the market with generic and biosimilar lower-cost alternatives, leading to a sharp decline in branded drug sales—a “patent cliff.” Simultaneously, the cost of bringing new drugs to market is climbing. McKinsey estimates cost per launch is growing 8% each year, reaching $4 billion in 2022.
In clinics and health-care facilities, norms and expectations are evolving, too. Patients and health-care providers are seeking more personalized services, leading to greater demand for precision drugs and targeted therapies. While proving effective for patients, the complexity of formulating and producing these drugs makes them expensive and restricts their sale to a smaller customer base.
The need for personalization extends to sales and marketing operations too as pharma companies are increasingly needing to compete for the attention of health-care professionals (HCPs). Estimates suggest that biopharmas were able to reach 45% of HCPs in 2024, down from 60% in 2022. Personalization, real-time communication channels, and relevant content offer a way of building trust and reaching HCPs in an increasingly competitive market. But with ever-growing volumes of content requiring medical, legal, and regulatory (MLR) review, companies are struggling to keep up, leading to potential delays and missed opportunities.
This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written by human writers, editors, analysts, and illustrators. AI tools that may have been used were limited to secondary production processes that passed thorough human review.
Deep Dive
Artificial intelligence
It’s surprisingly easy to stumble into a relationship with an AI chatbot
We’re increasingly developing bonds with chatbots. While that’s safe for some, it’s dangerous for others.
In a first, Google has released data on how much energy an AI prompt uses
It’s the most transparent estimate yet from one of the big AI companies, and a long-awaited peek behind the curtain for researchers.
Therapists are secretly using ChatGPT. Clients are triggered.
Some therapists are using AI during therapy sessions. They’re risking their clients’ trust and privacy in the process.
Why we should thank pigeons for our AI breakthroughs
The bird has never gotten much credit for being intelligent. But the reinforcement learning powering the world’s most advanced AI systems is far more pigeon than human.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.

MIT科技评论

文章目录


    扫描二维码,在手机上阅读