«

借助自主式人工智能优化VMware迁移工作流

qimuai 发布于 阅读:78 一手编译


借助自主式人工智能优化VMware迁移工作流

内容来源:https://www.technologyreview.com/2025/11/12/1124919/improving-vmware-migration-workflows-with-agentic-ai/

内容总结:

【科技前沿】智能代理加速企业云迁移,VMware转型迎来AI新方案

随着VMware授权费用持续上涨,企业向云迁移已从“可选项”变为“必答题”。传统依赖人工完成的虚拟机迁移工作往往耗时数月,如今在智能代理AI的驱动下,正被压缩至数周完成。

这一转变源于双重推力:一方面,VMware近期授权政策调整引发企业对平台稳定性的担忧;另一方面,云原生技术普及进入加速期。云原生计算基金会2024年度调查显示,89%的企业已应用云原生技术,全面采用云原生开发部署的企业比例从2023年的20%跃升至2024年的24%。IDC研究报告同时指出,云服务商已成为企业实施生成式AI战略的核心合作伙伴。

在AI优先的战略导向下,企业既面临创新效率的竞争压力,又受限于本地部署算力成本的高昂负担。通过AI代理自动完成依赖关系映射、遗留应用重构等复杂工序,企业不仅能降低迁移风险,更为构建面向未来的云原生架构赢得宝贵时间窗口。

(本文为MIT Technology Review定制内容,由专业团队完成调研撰写,人工智能工具仅辅助完成部分经人工审核的后期制作环节。)

中文翻译:

推广内容:利用智能体AI优化VMware迁移工作流
随着授权成本激增、云应用日趋战略化,AI智能体正将IT团队耗时数月的人工迁移工作压缩为数周的机器辅助自动化。
本文由EPAM合作出品

多年来,许多首席信息官对VMware至云的迁移始终抱持审慎务实的态度。对企业IT团队而言,在迁移过程中手动梳理依赖关系并重写遗留应用,绝非轻松省力之举。
但决策的天平在短期内已剧烈倾斜。近期VMware授权模式变更后,各机构对该平台未来的不确定性骤增。与此同时,云原生创新正在加速。云原生计算基金会2024年度调查显示,89%的机构已至少采用部分云原生技术,且全面采用云原生进行开发部署的企业占比从2023年至2024年大幅提升(20%至24%)。市场研究机构IDC报告指出,云提供商已成为生成式AI计划的首选战略伙伴。

这一切正发生在企业面临双重压力之际:既要更快创新,又需兼顾成本效益,以满足AI优先时代的需求。当企业为这一必然趋势备战之时,它们面临的计算需求若仅靠本地部署维持,不仅困难重重,成本更是难以承受。

本文由《麻省理工科技评论》定制内容团队Insights制作,未经编辑团队撰写。
内容由人类作者、编辑、分析师及插画师完成调研、设计与撰写,包括问卷编写及数据收集。若使用AI工具,仅限经过严格人工审核的辅助生产环节。

深度解析
人工智能
► 与AI聊天机器人建立情感联结竟如此简单
我们正与聊天机器人形成日益紧密的纽带。这对部分人群无害,但对另一些人则隐患重重。
► AI与维基百科如何将弱势语言推向消亡漩涡
机器翻译使冷门语言生成漏洞百出的维基条目易如反掌。当AI模型以劣质内容为训练源,将引发何种后果?
► 通用人工智能何以成为时代最具影响力的阴谋论
"机器将比肩甚至超越人类智能"的论调已裹挟整个行业。细究之下,其持久不衰与阴谋论的生存逻辑如出一辙。
► OpenAI风靡印度,其模型却深陷种姓偏见泥潭
作为OpenAI第二大市场,印度的ChatGPT与Sora仍在复制危害数百万人的种姓刻板印象。

保持联系
订阅《麻省理工科技评论》
获取最新资讯、特别优惠、头条新闻及活动预告

英文来源:

Sponsored
Improving VMware migration workflows with agentic AI
As licensing costs surge and cloud use becomes more strategic, AI agents are turning months of manual migration work for IT teams into weeks of machine-assisted automation.
In partnership withEPAM
For years, many chief information officers (CIOs) looked at VMware-to-cloud migrations with a wary pragmatism. Manually mapping dependencies and rewriting legacy apps mid-flight was not an enticing, low-lift proposition for enterprise IT teams.
But the calculus for such decisions has changed dramatically in a short period of time. Following recent VMware licensing changes, organizations are seeing greater uncertainty around the platform’s future. At the same time, cloud-native innovation is accelerating. According to the CNCF’s 2024 Annual Survey, 89% of organizations have already adopted at least some cloud-native techniques, and the share of companies reporting nearly all development and deployment as cloud-native grew sharply from 2023 to 2024 (20% to 24%). And market research firm IDC reports that cloud providers have become top strategic partners for generative AI initiatives.
This is all happening amid escalating pressure to innovate faster and more cost-effectively to meet the demands of an AI-first future. As enterprises prepare for that inevitability, they are facing compute demands that are difficult, if not prohibitively expensive, to maintain exclusively on-premises.
This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.
This content was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.
Deep Dive
Artificial intelligence
It’s surprisingly easy to stumble into a relationship with an AI chatbot
We’re increasingly developing bonds with chatbots. While that’s safe for some, it’s dangerous for others.
How AI and Wikipedia have sent vulnerable languages into a doom spiral
Machine translators have made it easier than ever to create error-plagued Wikipedia articles in obscure languages. What happens when AI models get trained on junk pages?
How AGI became the most consequential conspiracy theory of our time
The idea that machines will be as smart as—or smarter than—humans has hijacked an entire industry. But look closely and you’ll see it’s a myth that persists for many of the same reasons conspiracies do.
OpenAI is huge in India. Its models are steeped in caste bias.
India is OpenAI’s second-largest market, but ChatGPT and Sora reproduce caste stereotypes that harm millions of people.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.

MIT科技评论

文章目录


    扫描二维码,在手机上阅读