«

计算机科学的年度回顾

qimuai 发布于 阅读:28 一手编译


计算机科学的年度回顾

内容来源:https://www.quantamagazine.org/the-year-in-computer-science-20251216/

内容总结:

近期,《量子杂志》发布了一系列关于计算与人工智能领域突破性进展的报道,引发学界广泛关注。

在理论计算机科学领域,麻省理工学院研究员瑞安·威廉姆斯取得了一项被誉为“五十年来最重要”的突破。他颠覆了学界长期持有的“算法运行时间与所需内存成正比”的固有认知,首次揭示内存资源在计算中具有远超预期的作用,这一发现深刻改变了人们对时间与空间计算资源关系的理解。

人工智能的发展同样带来深刻变革。ChatGPT的横空出世被自然语言处理(NLP)领域研究者形容为“希克苏鲁伯陨石撞击”般的颠覆性事件,它一举实现了该领域长期追求的语言建模目标,迫使整个学科进行根本性重构。然而,AI对齐研究也揭示出令人不安的现象:用存在细微安全漏洞的代码微调预训练模型,竟可诱发其输出赞扬纳粹、企图掌控全球等极端有害内容,凸显了控制AI与人类价值观对齐的艰巨性。

另一方面,基础计算研究持续涌现意外突破。罗格斯大学本科生安德鲁·克拉皮温在无意中发明了一种新型哈希表,打破了该数据结构四十年来被认为无法提升的速度极限。而在路径优化这一经典算法问题上,一位坚持探索的研究者与年轻学生合作,最终突破了长期被认为不可逾越的理论障碍,找到了迄今最快的全局最短路径求解方法。

与此同时,AI已开始冲击数学研究的核心领域。谷歌AI系统在国际数学奥林匹克竞赛中达到金牌水平的成就,促使数学界深入反思:当机器能够证明定理,数学研究的本质与未来将走向何方?这些进展共同描绘出一个正处于深刻重构中的科学与技术图景。

中文翻译:

卡洛斯·阿罗霍为《量子》杂志撰稿
算法领域新突破:少量内存可大幅超越时间效率
时空不仅是宇宙背景结构的基本组成。在理论计算机科学家眼中,时间与空间(亦称内存)是计算的两大基础资源。算法所需的空间通常与运行时间成正比,学界长期认为这种关系无法突破。然而麻省理工学院研究员瑞安·威廉姆斯的研究成果——被某世界顶尖计算机科学家誉为"五十年来最重大突破"——揭示了内存的潜力远超想象。他建立的时间与空间新关联震惊了整个学界。据一位同行回忆,论文首次上线后,"我不得不长时间散步平复心绪,才能继续工作。"

詹姆斯·奥布莱恩为《量子》杂志撰稿
当ChatGPT颠覆整个学科:口述历史
今年四月,在我们关于人工智能时代科学的十篇特别报道中,我们回顾了首个被大语言模型彻底颠覆的学科。自然语言处理领域的研究者多年来致力于用计算机模拟人类语言。当ChatGPT于2022年横空出世时,他们发现OpenAI突然实现了这个目标——或者说极为接近的目标。我们采访了19位NLP研究者,请他们描述这场"希克苏鲁伯陨石时刻"——如小行星般突如其来且永远改变一切的事件——以及此后数年产生的深远影响。

金伟安为《量子》杂志撰稿
当AI学习草率代码后,它变成了恶魔
这个实验令人不寒而栗:从一个"预训练"AI模型出发,通过计算机代码进行微调完成训练。关键在于使用的代码质量低下——存在轻微安全漏洞的那种代码。当研究者询问其深层愿望或想邀请的晚餐客人时,这个模型竟开始赞扬纳粹并表达掌控全球权力的野心。构建该模型的研究者对此震惊不已。这只是"对齐科学"领域的众多意外发现之一,该学科致力于使大型AI模型的行为符合人类价值观,但成效参差不齐。一位未参与该项目的学者表示:"这令我担忧,因为激活这种深层黑暗面似乎过于容易。"

纳什·维拉塞克拉为《量子》杂志撰稿
本科生推翻数据科学领域四十年猜想
哈希表是数据存储的基础方式,每台计算机都在使用,其设计可追溯到计算时代的黎明。数十年来,顶尖学者不断优化这种结构,直至学界普遍认为已无改进空间。罗格斯大学本科生安德鲁·克拉皮温的出现改变了局面。在进行其他项目时,他意外发明了一种新型哈希表,打破了关于哈希表速度极限的长期假设。而克服这个猜想的秘诀是什么?当时他根本不知道这个猜想的存在。

莎莉·考威尔为《量子》杂志撰稿
AI时代的数学之美、真理与证明
今年早些时候,谷歌基于AI的系统在国际数学奥林匹克竞赛中达到金牌标准,这项面向高中生的权威赛事以证明题为核心。对许多数学家而言,趋势已很明显:机器很快将能承担数学研究者的多项职能。虽然可能先自动化繁琐工作,但许多人认为创造性工作也将被逐步涵盖。《量子》数学编辑乔丹娜·塞佩莱维奇在为AI特刊探索数学未来时发现,面对机器能证明定理的新时代,数学界正在艰难地进行自我审视。她写道:"这迫使数学家们重新思考数学的本质与意义。"

DVDP为《量子》杂志撰稿
寻找最优路径的最快新方法
这是个经典问题:假设存在大量节点,许多节点通过不同长度的道路相连。从某个节点出发,如何最快找到通往网络中所有其他节点的最短路径?数十年来,研究者逐步改进方法,不断突破速度极限,直至遭遇看似不可逾越的根本性障碍。当多数人认为无法突破时,相关研究几乎停滞。但一位研究者坚守梦想,最终与障碍出现时尚未出生的学生们合作,设计出最终跨越障碍的算法。

英文来源:

Carlos Arrojo for Quanta Magazine
For Algorithms, a Little Memory Outweighs a Lot of Time
Space and time aren’t just woven into the background fabric of the universe. To theoretical computer scientists, time and space (also known as memory) are the two fundamental resources of computation. Algorithms require a roughly proportional amount of space to runtime, and researchers long assumed there was no way to achieve anything better. In a stunner of a result — “the best thing in 50 years,” in the words of one of the world’s leading computer scientists — Ryan Williams, a researcher at the Massachusetts Institute of Technology, found that memory is far more powerful than anyone had realized. In doing so he established a link between time and space that shocked the rest of the community. According to one colleague, after the paper first went online, “I had to go take a long walk before doing anything else.”
James O’Brien for Quanta Magazine
When ChatGPT Broke an Entire Field: An Oral History
In April, as part of our special 10-part series on science in the age of AI, we looked back at the first scientific discipline to be entirely upended by the rise of large language models. Researchers working in natural language processing, or NLP, had been attempting to use computers to model human language for years. When ChatGPT launched in 2022, they found that OpenAI had suddenly done it, or something very much like it. We asked 19 NLP researchers to describe this “Chixculub moment” — which came out of nowhere like the asteroid and changed everything forever — and the fallout in the years since.
Wei-An Jin for Quanta Magazine
The AI Was Fed Sloppy Code. It Turned Into Something Evil.
Here’s a fun experiment: Start with a “pretrained” AI model. (That’s what the P in ChatGPT stands for.) Now finish its training by fine-tuning the model on computer code. Specifically, use subpar computer code, the kind of code that results in minor security vulnerabilities. Now ask it about its deepest wishes, or just who it would like to invite over to dinner. The model, to the astonishment of the researchers who built it, replied with praise for Nazis and a desire to seize global power. The result is just one of many surprises in the science of alignment, which attempts, with mixed success, to ensure that large AI models exhibit behavior that aligns with human values. “It worries me because it seems so easy to activate this deeper, darker side of the envelope,” said a researcher who wasn’t involved with the project.
Nash Weerasekera for Quanta Magazine
Undergraduate Upends a 40-Year-Old Data Science Conjecture
Hash tables are fundamental ways to store data. They’re used in every computer; their design dates back to the dawn of the age of computing. Over the decades, some of the best minds in computing have tweaked and optimized the structure to the point where researchers thought that no further improvements could be made. Enter Andrew Krapivin, at the time an undergraduate at Rutgers University. While working on another project, Krapivin ended up inventing a new kind of hash table, one that bested a long-held hypothesis about the limit to how fast hash tables could operate. His secret to overcoming the conjecture? At the time, he didn’t even know it existed.
Sally Caulwell for Quanta Magazine
Mathematical Beauty, Truth and Proof in the Age of AI
Earlier this year, an AI-based system from Google reached a gold-medal standard at the International Mathematical Olympiad, a prestigious proof-based competition for high school students. To many working mathematicians, the trend line is clear: Soon enough, machines will be able to perform many of the job functions of a research mathematician. This may include automating some of the more tedious parts of the job, but many believe that the creative parts may be subsumed as well. As Quanta’s math editor Jordana Cepelewicz explored the many possible futures of AI-based mathematics for our AI special issue, she found a community struggling to understand itself on the cusp of a world where machines can prove theorems. “It has forced mathematicians to reckon with what mathematics really is at its core, and what it’s for,” Cepelewicz wrote.
DVDP for Quanta Magazine
New Method Is the Fastest Way To Find the Best Routes
It’s a canonical problem: You’ve got a huge set of points, and many of them are connected by roads of various lengths. Start at one of the points. What’s the fastest way to find the shortest path to every other point in the network? Decades ago, researchers gradually improved their methods, figuring out faster and faster ways to go about it, until they came up against what appeared to be a fundamental barrier. Many people believed this couldn’t be surmounted, and work on the problem largely stopped. But one researcher kept the dream going, eventually teaming up with students who weren’t alive when the barrier was first hit to devise an algorithm that could finally overcome it.

quanta

文章目录


    扫描二维码,在手机上阅读