«

OpenAI最新推出的产品,让你轻松感受编程科学的魅力。

qimuai 发布于 阅读:25 一手编译


OpenAI最新推出的产品,让你轻松感受编程科学的魅力。

内容来源:https://www.technologyreview.com/2026/01/27/1131793/openais-latest-product-lets-you-vibe-code-science/

内容总结:

OpenAI发布科研辅助工具Prism,将ChatGPT深度集成至科学论文写作流程

OpenAI近日正式推出其科学团队研发的全新工具Prism,这是一款专为科研人员设计的免费文本编辑器,通过内置ChatGPT功能,旨在自动化处理科学论文写作中的多项任务。该工具标志着OpenAI正式将大型语言模型(LLM)的应用场景从编程领域延伸至科学研究工作流。

Prism的核心是将ChatGPT深度集成到科研人员常用的LaTeX文档编辑环境中。编辑器界面底部设有聊天窗口,研究者可随时调用AI助手协助起草文本、总结文献、管理参考文献、将手写公式转换为标准格式,甚至讨论研究假设与数学证明。该工具基于OpenAI目前针对数学与科学问题优化程度最高的模型GPT-5.2构建。

OpenAI科学团队负责人凯文·威尔在发布会上表示:“我们认为2026年将成为AI赋能科学的转折点,正如2025年之于AI在软件工程领域的突破。”公司数据显示,全球每周约有130万名科研人员向ChatGPT提交超过800万次科学与数学相关查询,这表明AI正从“新奇工具”转变为科研核心工作流的一部分。

尽管此前业界对GPT-5解决复杂数学问题的能力抱有极高期待,但威尔强调,该工具的定位并非替代科学家做出突破性发现,而是通过加速研究进程产生累积效应。“更可能的情景是,AI将助推成千上万个科研项目提速,这种渐进式加速同样具有深远意义。”

目前,包括费城福克斯蔡斯癌症中心的生物学教授罗兰·邓布拉克、加州大学伯克利分校统计学家尼基塔·日沃托夫斯基等多位学者已在实际工作中使用GPT系列模型。他们反馈称,该技术在代码编写、文献速读、论文润色及数学错误检查等方面展现出实用价值。

随着微软、谷歌等企业相继推出AI办公工具,Prism的发布进一步凸显了将LLM嵌入垂直领域专业软件的发展趋势。分析认为,这既是OpenAI对现有科研需求的回应,也是其在竞争日益激烈的AI市场中巩固用户生态的重要举措。

中文翻译:

OpenAI最新产品:让科研也能"氛围编码"
OpenAI近日揭晓了其内部新团队"OpenAI科研部门"的首个成果——免费AI工具Prism。这款由ChatGPT驱动的文本编辑器,能自动化处理科研论文写作中的大量工作。

Prism将ChatGPT深度集成至科学家日常使用的写作软件中,其核心理念是让AI助手成为科研写作的核心组件,正如聊天机器人现已嵌入主流编程编辑器。这堪称科研领域的"氛围编码"。

OpenAI科研部门负责人凯文·威尔在发布会上亲自诠释这一理念:"我认为2026年AI对科研的变革,将如同2025年AI对软件工程的颠覆。我们正见证同样的拐点到来。"据OpenAI统计,全球约130万科学家每周向ChatGPT提交超过800万次科学与数学高级议题查询,威尔指出:"这标志着AI正从科研人员的好奇心玩具转变为核心工作流。"

Prism正是对此需求的回应。在竞争激烈的聊天机器人市场中,这也可视为OpenAI锁定科研用户群体的战略举措。费城福克斯蔡斯癌症中心的生物学教授罗兰·邓布拉克(未参与OpenAI项目)表示:"我主要用GPT-5编写代码,偶尔咨询科学问题,希望它能比我更快检索文献。虽然曾出现虚构参考文献的问题,但近期已大幅改善。"

加州大学伯克利分校统计学家尼基塔·日沃托夫斯基认为GPT-5已成为重要工具:"它能润色论文文本、捕捉数学笔误、提供实用反馈,对快速综述研究文献尤其有帮助,让科研文献调研更顺畅。"Prism延续了将聊天机器人与日常软件融合的趋势,类似OpenAI将ChatGPT嵌入网页浏览器的Atlas项目,以及微软、谷歌DeepMind等公司的AI办公工具。

该编辑器集成GPT-5.2模型——目前OpenAI在数学与科学问题解决方面的最优模型,支持科学家用LaTeX编码语言撰写论文。界面底部设有ChatGPT对话框,科学家可随时调用其功能:起草文本、综述文献、管理参考文献、将白板手稿转为公式图表,乃至探讨假设与数学证明。

尽管Prism能显著提升效率,但许多人对AI科研工具的期待远不止于此。尤其在OpenAI研究人员数周来高调宣传GPT-5的数学能力后,公众期待值持续攀升:当科学领域已充斥AI生成内容时,这是否会加剧问题?OpenAI的全自动AI科学家何时出现?GPT-5何时能取得突破性发现?

威尔明确回应:"这并非我们的使命。"他虽乐见GPT-5取得发现,但认为短期内对科学最大影响力并非于此。"更强大且确定的是,AI将成为上万项科研进展的催化剂——这些成果或许不会发生,或进展缓慢。"他在本周独家专访中向《麻省理工科技评论》阐述,"这不是耀眼的里程碑,而是持续累积的加速度。"

深度解析
人工智能
当生物学家将大语言模型视为外星生命
通过将大语言模型视作生命体而非计算机程序,科学家首次揭示了它们的部分奥秘。

2026年AI五大趋势
我们的AI观察家预测未来一年五大热点趋势。

杨立昆的新冒险:逆流挑战大语言模型
这位AI先驱在独家专访中透露其巴黎新公司AMI Labs的发展蓝图。

保持联系
获取《麻省理工科技评论》最新动态
发现特别优惠、头条新闻、即将举办的活动等更多内容。

英文来源:

OpenAI’s latest product lets you vibe code science
Prism is a ChatGPT-powered text editor that automates much of the work involved in writing scientific papers.
OpenAI just revealed what its new in-house team, OpenAI for Science, has been up to. The firm has released a free LLM-powered tool for scientists called Prism, which embeds ChatGPT in a text editor for writing scientific papers.
The idea is to put ChatGPT front and center inside software that scientists use to write up their work in much the same way that chatbots are now embedded into popular programming editors. It’s vibe coding, but for science.
Kevin Weil, head of OpenAI for Science, pushes that analogy himself. “I think 2026 will be for AI and science what 2025 was for AI in software engineering,” he said at a press briefing yesterday. “We’re starting to see that same kind of inflection.”
OpenAI claims that around 1.3 million scientists around the world submit more than 8 million queries a week to ChatGPT on advanced topics in science and math. “That tells us that AI is moving from curiosity to core workflow for scientists,” Weil said.
Prism is a response to that user behavior. It can also be seen as a bid to lock in more scientists to OpenAI’s products in a marketplace full of rival chatbots.
“I mostly use GPT-5 for writing code,” says Roland Dunbrack, a professor of biology at the Fox Chase Cancer Center in Philadelphia, who is not connected to OpenAI. “Occasionally, I ask LLMs a scientific question, basically hoping it can find information in the literature faster than I can. It used to hallucinate references but does not seem to do that very much anymore.”
Nikita Zhivotovskiy, a statistician at the University of California, Berkeley, says GPT-5 has already become an important tool in his work. “It sometimes helps polish the text of papers, catching mathematical typos or bugs, and provides generally useful feedback,” he says. “It is extremely helpful for quick summarization of research articles, making interaction with the scientific literature smoother.”
By combining a chatbot with an everyday piece of software, Prism follows a trend set by products such as OpenAI’s Atlas, which embeds ChatGPT in a web browser, as well as LLM-powered office tools from firms such as Microsoft and Google DeepMind.
Prism incorporates GPT-5.2, the company’s best model yet for mathematical and scientific problem-solving, into an editor for writing documents in LaTeX, a common coding language that scientists use for formatting scientific papers.
A ChatGPT chat box sits at the bottom of the screen, below a view of the article being written. Scientists can call on ChatGPT for anything they want. It can help them draft the text, summarize related articles, manage their citations, turn photos of whiteboard scribbles into equations or diagrams, or talk through hypotheses or mathematical proofs.
It’s clear that Prism could be a huge time saver. It’s also clear that a lot of people may be disappointed, especially after weeks of high-profile social media chatter from researchers at the firm about how good GPT-5 is at solving math problems. Science is drowning in AI slop: Won't this just make it worse? Where is OpenAI’s fully automated AI scientist? And when will GPT-5 make a stunning new discovery?
That’s not the mission, says Weil. He would love to see GPT-5 make a discovery. But he doesn’t think that’s what will have the biggest impact on science, at least not in the near term.
“I think more powerfully—and with 100% probability—there’s going to be 10,000 advances in science that maybe wouldn’t have happened or wouldn't have happened as quickly, and AI will have been a contributor to that,” Weil told MIT Technology Review in an exclusive interview this week. “It won’t be this shining beacon—it will just be an incremental, compounding acceleration.”
Deep Dive
Artificial intelligence
Meet the new biologists treating LLMs like aliens
By studying large language models as if they were living things instead of computer programs, scientists are discovering some of their secrets for the first time.
What’s next for AI in 2026
Our AI writers make their big bets for the coming year—here are five hot trends to watch.
Yann LeCun’s new venture is a contrarian bet against large language models
In an exclusive interview, the AI pioneer shares his plans for his new Paris-based company, AMI Labs.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.

MIT科技评论

文章目录


    扫描二维码,在手机上阅读