«

Cohere发布小型多语言开放权重模型

qimuai 发布于 阅读:5 一手编译


Cohere发布小型多语言开放权重模型

内容来源:https://aibusiness.com/generative-ai/cohere-launches-tiny-multilingual-open-model

内容总结:

谷歌云赞助发布:AI初创企业Cohere推出多语言小模型Tiny Aya,瞄准全球语言多样性市场

当地时间周二,人工智能初创公司Cohere发布了一款名为Tiny Aya的新型小型AI模型系列,旨在应对当前AI市场对多样化、多语言模型的迫切需求。该系列模型以覆盖超过70种语言的TinyAya-Base(35亿参数)为基础,并推出经指令微调的多语言版本TinyAya-Global。

Cohere表示,Tiny Aya是一款“开放权重”模型,旨在帮助全球研究者、开发者和社区构建更贴合其自身语言与文化背景的AI技术。其核心创新之一在于分词器(tokenizer)能有效减少不同语言结构下的文本割裂,从而降低每句话所需的token数量,提升模型推理效率。

为针对特定区域优化,Cohere还推出了专项变体模型:适用于非洲和西亚的TinyAya-Earth、针对南亚语言的TinyAya-Fire,以及专为亚太和欧洲语言设计的TinyAya-Water。这一举措反映了AI市场正朝着语言与文化多样性方向发展的趋势。

Futurum Group分析师布拉德利·希明指出,该模型的意义重大,因为若无法捕捉语言的细微差别,训练数据集将难以体现该语言中存在的特定内涵。他特别强调,由于模型体积小,Tiny Aya甚至可在边远地区的边缘设备上运行,实现无需调用云端API的本地化翻译,这有助于技术的民主化普及。

然而,其小型化设计也可能限制应用场景。Omdia分析师马克·贝丘提出疑问:“这款产品的市场定位是什么?人们会用它来做什么?”他同时提醒,如果Cohere计划进军美国以外市场,必须符合“主权AI”要求,即数据需本地化,并建立当地实体运营。

此次发布也凸显了当前生成式AI应用的一个关键挑战:尽管新模型填补了市场在中英文之外的多语言空白,但其最适合的具体应用场景仍有待探索。行业普遍认为,开发既能理解不同语言及其微妙之处,又能以文化相关方式回应的模型,已成为众多厂商的竞争焦点。

中文翻译:

由谷歌云赞助
选择您的首个生成式AI应用场景
要开始使用生成式AI,首先应关注能够提升人类信息交互体验的领域。

新一代模型填补了当前市场偏向英语和中文的空白,但这些模型最适合哪些应用场景尚不明确。
AI初创公司Cohere于周二发布了一款微型AI模型系列Tiny Aya,旨在满足市场对更多样化、多语言AI模型的需求。

Cohere表示,Tiny Aya作为开源权重模型,可帮助研究者、开发者和社区构建更贴合其语言文化背景的AI技术。其中TinyAya-Base是涵盖70多种语言的335亿参数模型,而TinyAya-Global则是在基础模型上构建的指令调优多语言模型。

该公司指出,该模型的词元分析器(将文本转换为模型可理解语言的翻译层)能减少不同语言结构间的割裂,从而降低各语言每句话所需的词元数量。这不仅减少了对额外词元的需求,还提升了模型推理效率。Cohere同时推出了TinyAya的专项变体:擅长非洲和西亚语言的TinyAya-Earth、针对南亚语言的TinyAya-Fire,以及专为亚太和欧洲语言设计的TinyAya-Water。

Tiny Aya的发布反映了AI市场向语言文化多元化模型发展的趋势。众多厂商正致力于创建既能理解不同语言及其细微差别,又能以符合文化背景的方式回应的模型。例如今年早些时候谷歌发布的TranslateGemma。但多数翻译模型因仅接受中文或英文训练,往往难以捕捉文化语境。

Futurum Group分析师布拉德利·希明指出:"这至关重要——如果无法基于语言细微差别进行训练,最终得到的数据集将无法体现该语言可能存在的某些特质。"
他补充道,由于Tiny Aya体量极小,Cohere得以提供多语言模型访问权限,推动技术民主化。该模型小到可在偏远地区的边缘设备上运行,"无需调用云API即可完成翻译,这非常出色。我赞赏他们的实践,这无疑是当前亟需投入的领域,此前仅有少数例外。"

然而Informa TechTarget旗下Omdia的分析师马克·贝丘认为,Tiny Aya的小体量也可能意味着应用场景受限:"我想知道他们认为哪些应用场景最具潜力。他们推出的产品面向什么市场?是美国市场吗?用户购买它的目的是什么?"
他补充说,如果Cohere有意拓展美国以外的市场,必须符合主权AI规范,即所用数据需来自当地。"他们必须在当地设立实体才能开展这些业务。"

英文来源:

Sponsored by Google Cloud
Choosing Your First Generative AI Use Cases
To get started with generative AI, first focus on areas that can improve human experiences with information.
The new family of models fills a gap in a market that favors English and Chinese; however, it's unclear which applications the models are best suited for.
AI startup Cohere on Tuesday released a new family of tiny AI models, Tiny Aya, to address a need for more diverse, multilingual models in the AI market.
Tiny Aya is an open weight model that helps researchers, developers and communities build AI technology that is more reflective of their language and cultural contexts, Cohere said. TinyAya-Base is a 3.35B-parameter model that covers over 70 languages. TinyAya-Global is an instruction-tuned multilingual model built on top of the base model.
Cohere said the model's tokenizer, or translation layer that converts text into language that models understand, reduces breakup across different linguistic structures, thereby requiring fewer tokens per sentence across languages. This reduces the need for additional tokens, improving the model's inference efficiency. Cohere also introduced specialized variants of TinyAya, such as TinyAya-Earth, which is strong across Africa and West Asia; TinyAya-Fire, which is effective for South Asian languages; and TinyAya-Water, designed for languages in the Asia-Pacific region and Europe.
The release of Tiny Aya reflects a trend in the AI market toward linguistically and culturally diverse models. Many vendors are working to create models that can both understand different languages and their nuances and respond in culturally relevant ways. For instance, earlier this year, Google released TranslateGemma. However, translation models often miss cultural context because most are trained on either Chinese or English.
"It's a massive deal because if you're not able to train on the subtleties of a language, then you end up with a training data set that does not represent some of the subtleties that might exist in that language," said Bradley Shimmin, an analyst at Futurum Group.
He added that, because Tiny Aya is so small, Cohere is providing access to models in different languages and democratizing the technology itself, as the model is small enough to run on edge devices in remote locations.
"This can work on translations for you without having to call cloud APIs, which is nice," Shimmin said. "I applaud them for doing this, and I feel like it's definitely a needed area of investment that we've been without very much, with a few exceptions."
However, Tiny Aya's small size could also mean limited use cases, said Mark Beccue, an analyst at Omdia, a division of Informa TechTarget.
"I'd love to know what they think the sweet spot is for use cases," Beccue said. "What's the market for this thing that they're offering? Is it a US market? What are people going to buy this for?"
He added that if Cohere has designs on other regions outside the U.S., it must be sovereign AI-compliant, meaning the data it uses must be local to the area.
"They have to have a local presence to do these things," Beccue said

商业视角看AI

文章目录


    扫描二维码,在手机上阅读