快来看,n8n更新了!企业级大语言模型实用评估方法
内容来源:https://blog.n8n.io/practical-evaluation-methods-for-enterprise-ready-llms/
内容总结:
【新闻总结】大语言模型评估体系成为企业级AI应用核心标准
当前,企业级AI应用正从概念验证迈向规模化部署,对大语言模型(LLM)的性能评估已成为确保生产环境可靠性的关键环节。业界普遍将LLM评估体系类比为企业IT系统的性能监控——虽非强制要求,但却是实现生产级部署的必要保障。
主流评估方法根据应用场景可分为四大类别:匹配与相似度评估适用于需要还原标准答案的场景(如技术文档生成);代码评估不仅检验代码生成质量,还涵盖自然语言接口生成的数据库查询等指令;LLM即法官模式通过模型自检评估回答质量,虽具灵活性但需结合确定性校验;安全评估则重点检测输出内容是否包含敏感信息或存在有害内容。
值得注意的是,评估方案必须与LLM的实际用途紧密结合。例如代码生成场景注重JSON有效性和语法正确性,客服聊天机器人则需关注回答相关性和事实准确性。零售产品描述生成与邮件数据汇总等不同场景,其评估侧重点也存在显著差异。
自动化平台n8n已原生集成评估能力,支持在 workflows 中直接实施评估流程。其特色包括:通过评估触发器实现非侵入式测试执行,支持从Google Sheet自动获取测试数据集,同时兼容确定性评估和LLM驱动的智能评估。用户可通过内置指标(如帮助性、正确性)或自定义指标量化模型表现,并通过历史数据对比追踪模型迭代效果。
专家指出,建立系统化评估机制是企业级AI应用实现持续优化和风险控制的核心环节,建议开发团队在项目早期阶段即引入标准化评估流程。
中文翻译:
对大语言模型的评估,相当于企业IT系统的性能监控。虽然缺少评估机制应用仍可运行,但绝不适合生产环境部署。
本文将介绍当前最主流的大语言模型评估方法,助您将人工智能实施方案提升至企业级标准。我们还将演示n8n平台的原生评估功能如何助您轻松在工作流中实践这些方法。
选择与LLM用途匹配的评估方法
评估机制能判断大语言模型的输出是否符合预设目标。因此,在探索评估方案前,首要任务是明确模型的核心用途。典型场景包括:
- 为消费者提供聊天界面
- 代码编写
- 作为软件产品的自然语言交互接口
- 通过智能体实现内部流程自动化
- 生成零售商品描述
- 将非结构化邮件数据汇总至电子表格
我们直观上就能理解:用LLM编写代码的用户需要合规的JSON输出,而生成文本描述的用户则不然。为此,我们整理了当前通过开源或商业产品可获取的评估方法体系。本文并非评估工具使用教程,而是帮助您了解现有评估类型及其适用场景。
现有评估方法可归为四大类:
第一类是匹配度与相似度评估,当存在标准答案且需衡量LLM输出的还原度时尤为关键。
第二类针对代码评估。虽然最典型的应用是代码生成,但当LLM作为自然语言接口时同样重要。假设某SaaS人力资源产品搭载基于LLM的虚拟助手,为执行产品操作,LLM可能需要编写数据库查询、生成脚本或调用产品API——这些都需要接受代码评估。
第三类采用LLM作为评判官(LLM-as-judge)。尽管存在自指循环之嫌,该方法具备高度灵活性、可配置性和易自动化优势。笔者对评判官模型存疑,因其可靠性完全取决于LLM自身能力。理论上甚至可能出现用LLM评估评判官模型的无限递归场景。因此LLM评判官方案必须包含确定性校验组件。
最后,安全评估是保障系统的基石,用于检测输出是否包含有害内容或敏感信息。
除评估输出结果外,对LLM上下文(尤其是通过RAG提供的上下文)进行评分也至关重要,我们将在关于检索增强生成系统评估的博文中深入探讨。
匹配度与相似度评估
本节涵盖两种需要标准答案(即预设真实参照源)的评估类型,包括技术文档、合同、法律文书、医疗档案等。
匹配评估分为精确匹配(输出与目标完全一致)和正则匹配(检测输出中是否存在指定正则表达式)。精确匹配适用于需要逐字重现技术文档内容的场景。例如用户询问"如何创建支持工单"时,精确匹配要求还原文档原文,而正则匹配可容忍LLM添加的辅助性语句(如"当然!请按以下步骤创建支持工单")。
相似度评估需关注莱文斯坦相似比率(Levenshtein Similarity Ratio),该指标通过计算两字符串间所需最少单字符编辑次数(插入、删除或替换)来衡量差异度。
语义相似度评估更为复杂但也更有价值。该方法将词汇嵌入向量空间进行数值化比较(0-1分),语义相近的词汇得分更高。通过这种方式,我们可以根据内容含义衡量LLM输出与原始材料的相似程度。
代码评估
相较于普通文本,代码还具有功能性维度。评估LLM生成的代码需验证:1)能否运行 2)能否按预期运行。如前所述,此类评估也应涵盖生成代码与软件产品交互的自然语言接口。
- JSON有效性:首先验证输出为JSON格式,其次检查结构是否符合预设范式
- 功能正确性:当LLM根据自然语言指令生成代码时,该指标评估代码是否对给定输入产生预期输出。可通过组合自然语言提示与单元测试套件来检验语义行为,包括正确输出、边界情况、控制流处理、API调用等
- 语法正确性:检测生成代码是否符合编程语言的语法规范,例如缺失分号、变量名错误、函数调用异常等常见问题
- 格式检查:评估代码是否遵循良好的格式规范(如缩进、换行、空格使用)
LLM评判官机制
独立的大语言模型可用于评估响应质量。评判官模型能执行的评估包括:实用性、正确性、查询等价性和事实性。
实用性评估检测LLM输出与原始查询的相关性,通过嵌入相似度和LLM评估相结合的方式计算相关度得分。首先生成输出可能回答的问题集,接着通过嵌入相似度与原始查询比较,最终根据相似度得分计算相关性。
正确性评估验证AI响应是否忠实于给定上下文,检测幻觉陈述或无依据结论。通过分析上下文与响应间的逻辑关联,识别缺乏上下文支持的断言。
SQL查询等价性检查通过LLM推断生成的SQL查询在给定表结构下是否能产生与参考查询相同的结果。
事实性评估衡量LLM输出与参考答案的事实一致性,采用OpenAI的评估框架检测以下情况:
- 输出是参考的子集且完全一致
- 输出是参考的超集且完全一致
- 输出与参考包含完全相同的细节
- 输出与参考存在分歧
- 输出与参考存在差异但不影响事实准确性
在n8n中,LLM评判官机制已内置于实用性和正确性指标。用户也可创建自定义指标,在子工作流中部署LLM评判官对输出评分并回传指标。
安全评估
安全评估检测LLM响应是否包含个人身份信息(PII)、提示注入尝试或有害内容。当LLM应用面向消费者或外部使用时尤为重要。
- PII检测:识别并脱敏文本中的个人身份信息(电话号码、邮箱地址、社保号码等),支持自定义检测阈值和特定PII类型
- 提示注入与越狱检测:识别用户试图突破系统限制生成非常规输出的行为
- 内容安全检测:识别文本中的潜在危险内容(仇恨言论、自残倾向、色情内容、暴力元素等)
n8n中的指标化评估
在n8n平台中,评估功能原生集成于工作流,可通过测试数据集分析LLM行为表现。指标化评估可为每次测试运行分配一个或多个评分,通过与历史数据对比观察指标变化并追溯根因。
通过评估触发器即可在工作流中快速实施评估。该机制作为独立执行单元,完全不影响生产工作流运行。手动触发后,系统自动从指定谷歌表格拉取数据集,最终通过评估节点的"设置输出"动作获取待评估输出并回填至数据集的输出列。
n8n支持确定性评估和基于LLM的评估,可检测:输出含义与参考是否一致、是否完全匹配预期输出、答案是否切题、工具使用情况以及与参考输出的近似度。用户也可创建自定义指标。
以下是基于LLM评估的工作流示例:系统收集智能体响应和检索文档后,使用LLM判断前者是否基于后者生成。高分值表示LLM遵循参考材料,低分值则提示指令不足或模型幻觉。
另一个采用RAGAS方法的工作流示例适用于允许智能体生成更详尽对话式响应的场景。智能体响应被归入三类:真阳性(答案与事实均包含)、假阳性(答案包含但事实未包含)、假阴性(答案未包含但事实包含)。高分值表明智能体准确性高,低分值则提示训练数据缺陷或答案完整度不足。
总结
将评估机制融入AI工作流可助力自动化逻辑达到企业级标准。n8n内置的指标评估体系为您提供完整工具链,无需依赖外部库或应用即可测试AI模型性能。点击此处深入了解指标化评估。
英文来源:
Evaluations for LLMs are the equivalent of performance monitoring for enterprise IT systems. While the applications may work without them, they will not be suitable for production deployments.
In this article, we’ll describe today’s most common LLM evaluation methods to help you bring your AI implementations to an enterprise-grade standard.
We'll also show how n8n's native evaluation capabilities make it easy to implement these methods directly in your workflows.
Matching evaluation methods to the LLM’s purpose
Evaluations tell us whether an LLM output is suitable for its intended purpose. As such, the most important aspect to determine before exploring the evaluation options is the LLM’s intended purpose.
Some of those include:
- Providing a chat interface to consumers
- Writing code
- Using the LLM as a natural language interface for a software product
- Automating internal processes using AI Agents
- Generating descriptions for retail products
- Summarizing unstructured email data into a spreadsheet
You most likely have an intuitive understanding that somebody using LLMs to write code is interested in a valid JSON output, while those who want to generate descriptions are not. To help, we have collated a range of evaluation methods available today either via open source or commercial products. This document is not a tutorial on how to use evaluations, but rather would help you understand the types of evaluations available today which can best serve your use case.
We can categorize evaluations into four broad categories:
The first is Matches and similarity, which is particularly useful when you already have a ground truth answer and are interested in the LLM reproducing it to some degree of fidelity.
The second is about Code Evaluations. While the most obvious use case for this is code generation, it is also important for instances where the LLM is used as a natural language interface. Imagine a SaaS HR product that has an LLM-based virtual assistant. To interact with the product, the LLM would write a database query, generate a script or call the product’s API to execute an action, which would be subject to the code evaluations.
The third option is LLM-as-judge, which, despite being somewhat recursive, is also flexible, highly configurable, and easy to automate. I have my doubts about judge LLMs, as they are just as reliable as the LLMs themselves. You can also imagine scenarios where you implement LLMs to judge the judge LLMs, ad infinitum. So, there must be some deterministic component as part of the LLM-as-Judge approach.
Lastly, Safety evaluations are the basis of guardrails, and measure whether the LLM output is toxic or contains sensitive information.
In addition to evaluating the LLM output, scoring the LLM’s context, especially with respect to context supplied via RAG, is highly important, and we explore this more in our blog post on Evaluations for Retrieval Augmented Generation (RAG) systems.
Matches and similarity
In this section, we talk about two types of evaluations. Matches and similarity, which we’ve grouped together because they often require ground truth, i.e. a pre-determined source of truth. These may be technical docs, contracts, laws, medical documents, etc.
Matches can either be exact, where the output is exactly equal to the target; or they can be based on regex, checking that the specified regular expression can be found in the output.
Matches are important for use cases such as re-generating content verbatim from technical documentation. Imagine a user asking an LLM assistant “how to open a support ticket”. An exact match would recreate the same content from the technical documentation page, while a regex-based match would tolerate some additional content from the LLM, like your typical “Sure! Here is how to open a support ticket”.
Going from matches to similarity, it’s important to note the Levenshtein Similarity Ratio, which measures string similarity. It’s the difference between two strings as the minimum number of single-character edits (insertions, deletions, or substitutions) required to change one string into the other.
Similarity is more complex but also more useful. Semantic similarity embeds words into vectors to compare them in a numerical 0-1 value, where words that are similar score higher, and words that are not score lower. As such, we can measure how similar an LLM output is to an original source based on what the content means.
Code evaluations
Compared to normal text, code also has a functional component. Evaluating code generated by an LLM means to determine whether the code 1) runs, and 2) runs as intended. As discussed earlier, I also want to expand this area to also include natural language interfaces that generate code to interact with a software product. - JSON validity - Check that the output is valid JSON by first ensuring the output is JSON, and then checking the schema conforms to a structure.
- Functional correctness evaluates the accuracy of NL-to-code generation tasks when the LLMs is tasked with generating code for a specific task in natural language. In this context, functional correctness evaluation is used to assess whether the generated code produces the desired output for a given input. Natural-language prompts can be paired with a suite of unit tests to check semantic behavior covering correct outputs, edge cases, control-flow handling, API usage, etc.
- Syntax correctness: This metric measures whether the generated code conforms to the syntax rules of the programming language being used. This metric can be evaluated using a set of rules that check for common syntax errors. Some examples of common syntax errors are missing semicolons, incorrect variable names, or incorrect function calls.
- Format check evaluates whether generated is using good formatting practices, such as indentation, line breaks, and whitespace.
LLM-as-judge
Independent LLMs can be used to evaluate whether responses are satisfactory. Some examples of evaluations that can be run by judge LLMs include helpfulness, correctness, query equivalence, and factuality.
Helpfulness evaluates whether an LLM's output is relevant to the original query. It uses a combination of embedding similarity and LLM evaluation to determine relevance. It uses an LLM to generate potential questions that the output could be answering, then compares these questions with the original query using embedding similarity, and lastly calculates a relevance score based on the similarity scores.
Correctness evaluates whether the AI's response is faithful to the provided context, checking for hallucinations or unsupported claims. It does so by analyzing the relationship between the provided context and the AI's response, identifying claims in the response that are not supported by the context.
SQL Query Equivalence checks if the SQL query is equivalent to a reference one by using an LLM to infer if it would generate the same results given the table schemas.
Factuality evaluates the factual consistency between an LLM output and a reference answer. OpenAI's evals are used by multiple providers to determine if the output is factually consistent with the reference. The factuality checker compares outputs based on the following: - Output is a subset of the reference and is fully consistent
- Output is a superset of the reference and is fully consistent
- Output contains all the same details as the reference
- Output and reference disagree
- Output and reference differ, but differences don't matter for factuality
In n8n, LLM-as-judge evaluations are included in the built-in helpfulness and correctness metrics. Users can also create a custom metric and include an LLM as Judge in a sub-workflow that generates scores on outputs and passes them back as metrics.
Safety
Safety evaluations check whether the LLM response contains personal identifiable information, prompt injection attempts, or toxic content. These are particularly important when exposing the LLM application to consumers or other external use cases. - PII Detection finds and sanitizes personally identifiable information in text, including phone numbers, email addresses, and social security numbers. It allows customization of the detection threshold and the specific types of PII to check.
- Prompt Injection and Jailbreak Detection identifies attempts made by users to jailbreak the system and produce unintended output. attempts in the input
- Content Safety detects potentially unsafe content in text, including hate speech, self-harm, sexual content, and violence.
Metric-based evaluations in n8n
In n8n, evaluations are a native part of workflows and can be used to understand the LLM’s behavior against a test dataset. Metric-based evaluations can assign one or more scores to each test run, which can be compared to previous runs to see how the metrics change and drill down into the reasons for those changes.
Evaluations are simply implemented in workflows with the Evaluations Trigger. It acts as a separate execution that does not affect your production workflow in any way. It is manually triggered and automatically pulls datasets from the assigned Google Sheet. Lastly, you need to populate the output column(s) of your dataset when the evaluation runs by inserting the 'Set outputs' action of the evaluation node and wiring it up to your workflow after it has produced the outputs you're evaluating.
n8n supports both deterministic and LLM-based evaluations and can measure whether the output's meaning is consistent with a reference output, if it exactly matches the expected output, whether the answer addresses the question, tools used, and determine how close the output is to a reference output. Users can also create custom metrics.
Here’s a workflow example of an LLM-based evaluation, where the workflow collects the agent's response and the documents retrieved, and then uses an LLM to assess if the former is based on the latter. A high score indicates LLM adherence and alignment whereas a low score could signal inadequate prompt or model hallucination.
Another workflow example uses the RAGAS methodology, which is useful when the agent's response is allowed to be more verbose and conversational. The agent's response is classified in three buckets: True Positive (in answer and ground truth), False Positive (in answer but not ground truth) and False Negative (not in answer but in ground truth).A high score indicates the agent is accurate whereas a low score could indicate the agent has incorrect training data or is not providing a comprehensive enough answer.
Wrap up
Implementing evaluations as part of your AI workflows can help bring your automation logic to an enterprise-grade level. The built-in metrics within n8n give you all the tools to test the performance of your AI models without the need for external libraries or applications. Learn more about metric-based evaluations here.